Лучевая энергия. Действие лучистой энергии. Общее биологическое действие ультрафиолетовых лучей на человека выражается трояко

Лучистой энергией называется со­вокупность всех электромагнитных волн, возникающих и распро­страняющихся в пространстве со скоростью, приближающейся к 300 тыс. км/с. Патологическое влияние на организм оказывает преимущественно излучение, способное вызывать ионизацию в тка­нях. Причем болезнетворное действие лучей обратно пропорцио­нально длине их волн.

Различные виды лучистой энергии обладают неодинаковым дей­ствием. В одних случаях лучистая энергия, поглощаясь тканями, переходит в тепловую, в результате чего происходит перегревание животных; в других она оказывает химическое влияние на ткани, вызывает ряд химических превращений в организме, дает так назы­ваемый фотохимический эффект.

В возникновении патологических процессов в организме опре­деленную роль могут играть солнечные лучи и в первую очередь ультрафиолетовые солнечного спектра. Эти лучи обла­дают химическим действием, и чем короче длина волны, тем они ин­тенсивнее. Эффект влияния лучей на организм зависит от длитель­ности действия, их угла падения, толщины атмосферного слоя, че­рез который лучи проходят, а также от проницаемости тканей и от общей реактивности организма. При длительном действии ультра­фиолетовых лучей у животного расширяются сосуды, падзет кро­вяное давление, нарушается обмен веществ (в основном белковый), усиливаются процессы распада в тканях.

При интенсивном и длительном облучении больших посерхиос-тей тела у животного могут возникнуть резкие расстройства гемо­динамики - типа шока, что иногда приводит даже к летальному исходу. Патогенное воздействие ультрафиолетовых лучей на цен­тральную нервную систему развивается в двух направлениях: с одной стороны, происходит торможение ее деятельности вследст­вие раздражения рецепторного аппарата (лучами и токсическими продуктами распада тканей); с другой стороны, появляется токси­ческое воздействие на нее (гуморальным путем) облученного холе­стерина и белково-липоидных комплексов крови.

Длинные волны солнечного спектра, крас­ные и инфракрасные лучи оказывают на организм тепловое влияние. От чрезмерного действия этих лучей наблюда­ется перегревание организма или возникают различной степени ожоги.

Под влиянием прямых солнечных лучей, если они попадают на незащищенную голову животного, может возникнуть солнечный удар. При этом происходит расширение сосудов центральной нерв­ной системы (мозговых оболочек) и повреждение вазомоторов. Иног­да отмечают разрывы капилляров и кровоизлияния в нервную ткань. Вначале животные сильно возбуждаются, дыхание и пульс у них учащаются, начинаются судороги, затем наступает стадия угнетения. Животные нередко гибнут от паралича центров дыха­ния или кровообращения. Влияние солнечных лучей на организм может наступить не сразу, а спустя несколько часов, то есть когда ультрафиолетовая химическая часть спектра начинает проявлять свое действие. В отличие от теплового удара при солнечном ударе необязательно предварительное перегревание организма: повыше­ние температуры тела при солнечном ударе считается вторичным фактором в результате раздражения нервных теплорегулирующих центров. Нарушение функции высших нервных центров, возбуж­дение коры головного мозга при солнечном ударе более вариабель­ны и стойки, чем при тепловом.

Излучение лазера. Лазер способен излучить монохроматические пучки света с ма­лым углом расхождения. Лу­чи действуют на ткань очень короткий промежуток времени (сто­тысячные доли секунды), поглощаются они пигментированными тканями, эритроцитами, меланомами и пр. Лучи лазера разрушают живые ткани, особенно чувствительны к ним опухоли. Поврежде­ние биологического объекта происходит в результате термическо­го действия луча на ткани и поглощения ими тепловой энергии. В тканях и клетках одновременно образуются токсические вещест­ва и изменяется действие тканевых ферментов. Кроме того, возмож­но механическое действие вследствие мгновенного перехода твердых и жидких веществ в газообразное состояние и повышения внутри­клеточного давления (до нескольких десятков и сотен атмосфер).

Действие ионизирующего излучения . Ос­новной источник ионизирующего излучения - рентгеновское и радиоактивное. Биологическое действие этой радиации зависит от многих факторов: вида излучения, дозы общего или местного воздействия, внешнего или внутреннего облучения, однократного или повторного, а также от индивидуальной и видовой чувстви­тельности организма.

Различные ткани обладают разной чувствительностью к радиа­ционному создействию. По степени поражаемосги их можно рас­положить следующим образом" кроветворные органы, кишечные же­лезы, эпителий половых органов, эпителий кожи и хрусталика, эндотелий, фиброзная ткань, внутренние эпителиальные органы, хрящи, кости, мышцы, нервная ткань. Функциональные и струк­турные изменения в нервной системе, наблюдающиеся при радиа­ционных воздействиях, приводят к нарушению регуляции деятель­ности всего организма, к понижению устойчивости его к инфек­ционным заболеваниям.

Лучевая болезнь - общее поражение организма в ре­зультате действия больших доз ионизирующих лучей. Возникает она как при наружном действии радиации (при аварии во время ра­боты с генераторами, способными производить ионизирующие излу­чения, при атомном взрыве, при неправильном применении лучевой терапии), так и при внутреннем облучении (при попадании внутрь организма с пищей, с вдыхаемым воздухом различных радчоактив-ных веществ).

Течение лучевой болезни может быть острое (при дейс^ии на организм больших доз ионизирующей радиации) и хроническое (на организм действуют малые дозы, но длительное время).

Отдаленные последствия ионизирующих излучений - их кан­церогенное влияние и поражение хромосомного аппарата половых клеток. При тяжелых лучевых поражениях в результате пони­жения резистентности организма отмечают аутоинфекцию, а при накоплеьин в крови токсических веществ - явления гоксеучи.

Действие электричества.

Патологическое влияние электрической энергии на организм животного произойдет, если оно непосредствен­но соприкасается с токонесущим предметом или если организм под­вергся разрядам атмосферного элекгричеава (при ударе молнии). Патологические изменения в организме зависят от свойств электри­ческого тока, реактивности организма и его тканей, а также от ряда частных сопутствующих моментов. Действие электрического тока на организм определяется его напряжением и силой, длительностью воздействия, характером тока (постоянный, переменный), сопротив­лением тканей, направлением тока и индивидуальными особенно­стями животного Пагогенность тока обусловливается и продолжи­тельностью прохождения его через организм, с увеличением вре­мени действия тока увеличивается и его вредность.

Последствие от электрического тока зависит от жизненной важ­ности органов, через которые он прошел. Наиболее опасно для жизни, если ток проходит через сердце Происходит медленный и необратимый его паралич, развиваются явления мерцательной арит­мии желудочков, и наступает остановка сердца в состоянии диасто­лы. Нервные центры у животных некоторых видов менее чувстви­тельны к электрическому току по сравнению с сердцем.

Различают местное и общее действие электрического тока. При местном действии получается ожог, имеющий иногда фор­му того проводника, который оказал свое действие. На месте входа и выхода тока из организма образуются раны, а вокруг них из-за паралича кожных сосудов - ветвистые фигуры красного цвета. Спустя некоторое время (несколько дней, недель) после воздейст­вия электрического тока на месте поражения нередко наблюдают омертвение наружных покровов и нижележащих тканей. Иногда на коже остаются небольшие серовато-белого цвета твердые участ­ки овальной или круглой формы, окаймленные валикообразными возвышениями. Это так называемые электрические знаки; гистоло­гически они имеют вид палисадообразно расположенных клеток мальпигиевого слоя кожи. Этим же тканям свойственно ячеистое строение, причем в некоторых ячейках бывает газ, образовавший­ся, по-видимому, в результате электрохимического действия тока.

При общем действии электрического тока в первую оче­редь поражаются нервная и сердечно-сосудистая системы. Измене­ния в центральной нервной системе протекают двухфазно: в виде кратковременного возбуждения и более длительного угнетения, или торможения. Фаза возбуждения резко выражена при действии тока небольшой силы При прохождении же тока в 100 А и выше фаза возбуждения весьма короткая, но за ней быстро следует фаза тормо­жения, проявляющаяся нередко падением кровяного давления, прекращением дыхания. В результате наступает так называемая мнимая смерть.

Нарушение кровообращения и дыхания при электротравме так­же протекает двухфазно. В первую фазу повышается артериальное и венозное давление, учащается дыхание. Изменения гемодинами­ки и ритма дыхания обусловлены электрораздражи гелем рецепто­ров, а также судорожным сокращением поперечнополосатой муску­латуры. Во время повышения кровяного давления сердечные сокращения становятся реже вслед­ствие раздражения током блуждающего нерва. Во второй фазе, которая наступает довольно быстро, кровяное давление резко пада­ет и дыхание останавливается.

У животных, перенесших электротравму, отмечают тяжелые поражения нервной системы, параличи поперечнополосатых мышц, поражение кишечника, мочевого пузыря, почек, отеки, водянку суставов. Последствия электротравмы также зависят от исходного функционального состояния центральной нервной системы, о чем свидетельствует тог факт, что у наркотизированных животных дейст­вие электротока понижено. Сильный электрический ток может вызвать состояние парабиоза тканей; этим, по всей вероятности, обусловлено отсутствие болезненности пораженных тканей.

Механизм действия электрического тока. Электрический ток действует на ор1анизм в трех направлениях: элек!рохимическом, электротермическом и элект­ромеханическом.

Электрохимическое действие выражается в возникновении процесса электролиза в тканях, в нарушении их коллоидных структур; происхо­дит, в частности, образование жирных кислот от разложения кожного сала. Электрохимический процесс является причиной образования элект­рических знаков на месте входа и выхода элект­ротока.

Электротермическое действие вызывается тем, что электрическая энергия, пройдя через ткани организма, переходит в тепловую (джоулева теп­лота). Особенно много тепла образуется при про­хождении тока высокого напряжения через кост­ную ткань, из-за чего на костях появляются так называемые костяные бусы; они белого цвета, шарообразной или яйцевидной формы, величиной с просяное зерно или горошину, состоят из фос­форнокислой извести с последующим превраще­нием ее (после прекращения действия тока и ох­лаждении массы) в твердое тело. Повышение температуры тканей особенно заметно в местах входа и выхода тока; оно вызывает раздражение нервных рецепторов, в результате чего возникают болевые ощущения и рефлекторное нарушение дея­тельности различных органов. При электротравме повышается и температура тела.

Электромеханическое действие обусловлено непосредственным переходом электрической энергии в механическую, а также дейст­вием образовавшихся на месте травмы газа и пара; указанные фак­торы вызывают в тканях структурные изменения типа резаных ран, переломов, костных трабекул и др.

Действие атмосферного электричества (молнии). Удар молнии в голову обычно влечет за собой смерть от паралича дыхания. Из местных изменений при ударе молнии возни­кают ожоги с разрывом тканей, на наружных покровах, вследствие паралича сосудистых нервов и самих сосудов появляются красные зигзагообразные фигуры. Язвы, образовавшиеся от удара молнии, плохо заживают. При несмертельном поражении молнией наблюда­ют потерю сознания, судороги, а иногда стойкие параличи.


Похожая информация.


Лучистая энергия Солнца , поступающая на Землю, представляет собой самый значительный источник энергии, которым располагает человечество. Солнце, как и другие звезды, является раскаленным газом. Внутри Солнца существует область высокого давления, где температура достигает 15 - 20 млн. град. На Солнце имеется в незначительном количестве кислород и поэтому процессы горения, понимаемые в обычном смысле, не протекают сколько-нибудь заметно. Огромная энергия образуется на Солнце за счет синтеза легких элементов водорода и гелия.

Лучистая энергия солнца , поглощаясь поверхностью почвы, превращается в тепловую и передается в нижележащие слои почвы. Часть солнечной энергии отражается поверхностью почвы. Если температура поверхности почвы ниже, чем температура приземного слоя атмосферы, то почва отдает тепло, аккумулированное за счет поступившей солнечной радиации.

Лучистая энергия Солнца , поступающая на Землю, представляет собой самый значительный источник энергии, которым располагает человечество. Солнце, как и другие звезды, является раскаленным газом. Внутри Солнца существует область высокого давления, где температура достигает 15 - 20 млн град.

Лучистая энергия солнца , преобразуемая в тепло, может быть использована, минуя электролиз, непосредственно для термохимического разложения воды. Ранее было показано, что двухстадийные термохимические циклы мало вероятны при использовании тепла атомных реакторов. Но необходимые для двухстадийного термохимического цикла разложения воды температуры могут быть достигнуты при использовании солнечной энергии.

Лучистая энергия солнца , в первую очередь ультрафиолетовая часть солнечного спектра, обладает значительным биологическим действием. Мод ее влиянием в коже образуется витамин I), необходимый для правильного обмена в организме фосфора и кальция, важнейших составных частей костной и мозговой тканей.

Количество лучистой энергии Солнца , которая поступает за 1 мин на площадку в 1 см2, поставленную вне земной атмосферы перпендикулярно к солнечным лучам на среднем расстоянии от Земли до Солнца, называется солнечной постоянной. Предполагают, что при максимуме солнечной активности излучение Солнца несколько увеличива -, ется, однако оно не превышает долей процента. I Солнечная активность существенно влияет на земные процессы, проявляющиеся через солнечно-земные связи в ответной реакции Земли (ее внешних оболочек, включая биосферу) на изменение указанной активности.

С лучистой энергией Солнца связана освещенность земной поверхности, определяющаяся продолжительностью и интенсивностью светового потока. Вследствие вращения Земли происходит периодическое чередование темного и светлого времени суток, а также изменение продолжительности светового дня. Поскольку данный фактор имеет правильную периодичность, то его значение для жизни исключительно велико.

При фотосинтезе лучистая энергия Солнца преобразуется в химическую и в виде потенциальной энергии находится в растительной органической массе - продукте фотосинтеза.

Радиацией называют лучистую энергию солнца , попадающую на облучаемую поверхность.

Повышение плотности потока лучистой энергии Солнца , как уже отмечалось, может осуществляться зеркальными и линзовыми системами, однако в дальнейшем основное внимание будет уделено зеркальным концентрирующим системам, что не снижает общности принципиальных положений развиваемого подхода к формализованному описанию рассматриваемого процесса.

Источником естественного освещения является лучистая энергия солнца . Естественная средняя наружная освещенность в течение года по Месяцам и часам дня резко колеблется, дости-гая в средней полосе нашей страны максимума в июне и минимума в декабре.

Неисчерпаемым источником тепловой энергии является лучистая энергия солнца , которая вызывает также образование ветра, потоков воды и других видов энергии. Однако промышленное использование энергии солнечной радиации в виде теплоты является пока огра.

СОЛНЕЧНАЯ ПОСТОЯННАЯ - полное количество лучистой энергии Солнца , падающее вне атмосферы Земли на площадку единичной площади, расположенную перпендикулярно солнечным лучам на ср.

Источник естественного освещения - поток лучистой энергии солнца , доходящий до земной поверхности в виде прямого и рассеянного света. Оно наиболее гигиенично - имеет благоприятный спектральный состав. В зависимости от географической широты, времени года, состояния погоды уровень естественного освещения может резко изменяться и в довольно широких пределах.

ГЕЛИОУСТАНОВКА - устройство, улавливающее лучистую энергию Солнца и преобразующее ее в другие, удобные для практич.

Основным источником тепла для почвы является лучистая энергия солнца . Некоторое значение может иметь тепло, выделяющееся при экзотермических реакциях, вызываемых в почвенном слое микроорганизмами.

Первый термический фактор обусловлен неравномерным распространением лучистой энергии Солнца по поверхности Земли. В приполярных районах до 95 % лучей Солнца отражается от снега и льдов. Это объясняется тем, что в высоких широтах лучи входят в атмосферу под косым углом, а значит, их световая энергия распределяется на большую площадь земной поверхности. Скользящие солнечные лучи, проникающие в атмосферу не под прямым углом, проходят через более толстый слой воздуха. Поэтому здесь всегда холодно, формируется постоянно высокое давление. И наоборот, в экваториальной зоне солнечные лучи падают на поверхность Земли под прямым углом, сильно ее нагревая. В результате здесь формируется зона низкого давления. Поэтому происходит перемещение воздуха из приполярных районов в область экватора, т.е. из зон высокого в зоны низкого давления. Экваториальные воздушные массы, интенсивно и быстро нагреваясь, поднимаются и в высоких слоях атмосферы расходятся к северу и югу и охлаждаются.

ГЕЛИОЭЛЕКТРЙЧЕСКАЯ СТАНЦИЯ - гелиоустановка, преобразующая лучистую энергию Солнца в электрич.

Допустим, что мы можем собрать лучистую энергию солнца , которая падает на поверхность земли за год; если эту лучистую энергию мы сможем превратить в такую энергию, которая была бы для нас полезна, то оказывается, что при таком превращении мы покроем все источники энергии, которые в настоящее время имеются на земле.

Все большее практическое применение находит использование таких источников энергии, как лучистая энергия Солнца в полупроводниковых установках и фотоэлементах, использование внутреннего тепла Земли, энергии морских приливов и пр. Все это, вместе взятое, наряду с освоением управляемых термоядерных реакций позволит во много раз увеличить количество вырабатываемой электрической энергии по сравнению с современным уровнем.

Такой режим (постоянство QI) реально осуществляется в термогенераторах, использующих лучистую энергию солнца или тепло распада радиоактивных изотопов.

Покрытия с высоким значением степени черноты находят широкое применение в установках, использующихлучистую энергию Солнца . Практическая гелиотехника в настоящее время развивается бурными темпами.

Среди климатических факторов важное место в жизни растений занимают свет и тепло, связанные с лучистой энергией солнца ; вода; состав и движение воздуха. Атмосферное давление и еще некоторые явления, входящие в понятие климата, существенного значения в жизни и распределении растений не имеют.

В будущем возможно строительство более экономичных гелио-станций с использованием полупроводников (солнечных батарей) для непосредственного превращения лучистой энергии Солнца в электрическую энергию. ]

Свет - главный экологический фактор, определяющий основу жизнедеятельности растительного организма - фотосинтез, процесс превращения зелеными растениями лучистой энергии солнца в энергию химических связей органических веществ. Этот процесс происходит с поглощением углекислого газа и выделением свободного кислорода. При участии поглощающих свет пигментов - хлорофилла и некоторых других - углекислый газ и вода, вступая в реакцию, образуют основную пищу растений - углеводы.]

В своих исследованиях мы исходим из соображений, что, изменяя оптические свойства поверхности почвы, можно увеличить поглощение лучистой энергии Солнца днем и уменьшить излучение тепловой энергии ночью. Наши прошлогодние опыты с аце-тилцеллюлозной пленкой показали, что эта пленка может служить прекрасной защитой от излучения, но пока она слишком дорога для полеводства.

В широких масштабах развертываются работы в направлении создания солнечных электростанций, основанных либо на применении солнечных концентраторов совместно с термодинамическим (паротурбинным) циклом, либо на использовании технологии прямого преобразования лучистой энергии Солнца в электричество.

Таким образом, энергия, доставляемая Солнцем, может быть использована для получения работы в ветряном двигателе только при условии, что имеется разность температур отдельных частей атмосферы, создаваемая поглощением лучистой энергии Солнца и частичным испусканием ее в мировое пространство. Итак, на совершение работы идет не вся теплота, полученная от нагревателя, а только ее часть, остальная же теплота отдается холодильнику.

Атмосфера определяет световой и регулирует тепловой режимы Земли, способствует перераспределению тепла на земном шаре. Лучистая энергия Солнца - практически единственный источник тепла для поверхности Земли - частично поглощается атмосферой. Достигшая поверхности Земли энергия частично поглощается почвой и водоемами, морями и океанами, частично отражается в атмосферу.

Электромагнитная радиация ( лучистая энергия Солнца ) - электромагнитные волны, распространяющиеся со скоростью 300 тыс. км / с. Корпускулярная радиация состоит в основном из протонов, движущихся со скоростью 300 - 1500 км / с и практически полностью улавливаемых магнитосферой Земли.

Солнечная радиация является существенным фактором формирования климата. Ввиду запыленности городовлучистая энергия Солнца поглощается частичками пыли. По данным американских и английских исследователей, большие города получают на 15 % меньше солнечной радиации, на 10 % больше дождя, на 10 % больше облачных дней, причем за последние 80 лет частота возникновения туманов увеличилась в два раза.

ЛУЧИСТАЯ ЭНЕРГИЯ , электромагнитные колебания различной частоты и соответствеи-ло различной длины волны. В эту пеструю но своим свойствам группу, объединяемую ло.д термином «лучистая энергия», входят инфракрасные лучи с длиной волны 0,3 мм -0,75 /г, лучи видимого света от красных (750 т/л) до фиолетовых (400 т/л), ультрафиолетовые лучи (400 m/i -10 т/л), рентген. лучи (10 m/i - 0,1 А) и & лучи радия (1А= =0,01А). Их биолог, и терапевтич. действие чрезвычайно различно и определяется в первую очередь длиной волны соответствующих лучей и степенью проницаемости для них тканей организма. Биологическое действиеЛ.э. В основе многообразного влияния Л. э. на «иол. объекты лежит воздействие лучей на течение физ., физ.-хим. и хим. процессов. В качестве примера можно привести ионизацию и перезарядку под влиянием ультрафиолетовых лучей, изменение величины поверхностного натяжения, вязкости, проницаемости, а из влияний на хим. процессы- полимеризацию молекул кислорода, в молекулы озона, процессы расщепления, окис-еления и восстановления. Подробно о биол. действии отдельных видов Л. э.-см. Свет, Тещлота, Рентгеновские лучи, Инфракрасные лучи, Ультрафиолетовые лучи. Действие Л. э. на человека в производственной обстановке. В производстве.мы встречаемся с тепловым воздействием Л. э. на рабочих всюду, где имеются установки.для нагреваний (печи, горны и т. п.) либо нагретые предметы. Интенсивность излучения и его спектр, состав зависят главным «о.3разом от нагрева этих источников. При прочих равных условиях общая энергия излучения согласно закону Стефана-Больц-мана пропорциональна четвертой степени абсод. t° излучающего тела. На производстве: мы встречаем радиации с различными спектрами: либо непрерывными, сплошными, исходящими от нагретых твердых и жидких тел. либо прерывистыми, полосатыми, источником к-рых являются нагретые газы. Энергия отдельных участков спектра у первых располагается т. о., что в определенном участке, вполне характерном для каждой t° иагрева, количество энергии излучения является максимальным, круто спадая в сторону коротких лучей и более полого в сторону длинных. Эту зависимость выражает «формула Вина: 1 тс№ . Т=К, где l max -длина волны (в микронах) того спектрального уча- ЭНЕРГИЯ 436 стка, в котором находится максимум энергии излучения, Т - абсолютная температура нагрева, К - константа, равная 2 960. Эта формула дает возможность заключить, что для подавляющего большинства производственных источников излучения максимум их энергии приходится на инфракрасную часть спектра и почти вся энергия их общего потока падает на инфракрасное излучение; в противоположность этому максимум энергии солнечного спектра находится в к пшх =А1Ът/1, что соответствует темп-ре 6 000°. Следующей особенностью, встречающейся на производстве радиации, является характер ее распространения в виде лучей расходящихся, а не параллельных (как у солнечного излучения). Это обстоятельство делает непригодным для применения на производстве ряд измерительных приборов, рассчитанных на параллельный ход солнечной радиации. Пригодной для применения в производственных условиях оказалась только специально сконструированная проф. Ка-литиным модель актинометра, дающая возможность определять радиацию напряженностью в 20-30 калорий и, благодаря простоте работы с ней, нашедшая уже широкое применение в сан.-гиг. практике (см. Актинометр ия). В производственных условиях встречаются источники Л. э. неподвижные (горны, печи и др.) и подвижные (обрабатываемые предметы, болванки и т. д.). Среди первых мы различаем источники с открытым пламенем (например горны), а также нагретые предметы, излучающие энергию в пространство, и источники, окруженные какой-либо оболочкой, задерживающей поток Л. э. (напр. печи). У последних интенсивность излучения может сильно колебаться в зависимости от состояния оболочки, наличия отверстий, открывания или закрывания крышек и заслонок и т. д. Максимальные интенсивности радиации наблюдаются именно у этих источников; так напр. у мартеновских печей при закрытых заслонках, при значительной их изношенности и наличии вокруг них зазоров установлена была на расстоянии 1,5 м напряженность радиации до 10 калорий. При открытии загрузочных окон интенсивность излучения на расстоянии 1 м может доходить до 30-40 и больше калорий. (Для сравнения отметим, что тепловой эффект солнечного излучения на границе земной поверхности, по Abbot"у, не превышает 1,937 калорий.) Из других наблюдений на производстве можно привести следующие данные: у нагревательных колодцев" Джерса в прокатных цехах на расстоянии 1 м найдено 0,51-3,5 калорий, у листопрокатных станов в момент прокатки на расстоянии 1 м -13,8 калорий; в сталелитейных у печей Сименса при их нагреве от 1 600-2 100°-10,5-16,5 калорий, на расстоянии 3 м -1,2-2,0 калорий; радиация от льющейся стали при измерении непосредственно около изложниц - 17,85 - 20,34 калорий, на расстоянии - 4,0 - 4,8 калорий. В кузницах источниками радиации являются либо горны, у которых наблюдалась напряженность от 1,0 до 13,0 калорий, либо обрабатываемые предметы, 4&7 ЛУЧИСТАЯ ЭНЕРГИЯ 4S8 интенсивность излучения от к-рых зависит от площади излучающей поверхности. У стеклоплавильных печей интенсивность излучения на рабочем месте равнялась 0,2- 10 калорий. Все авторы отмечают крайнюю неравномерность распределения Л. э. в пространстве. Основным моментом, определяющим степень теплового воздействия Л. э. на рабочего, помимо интенсивности является длительность непрерывного воздействия Л.э., весьма различная в зависимости от характера производственных процессов. Серьезное значение имеют также длительность и частота перерывов в облучении, состояние окружающего воздуха (его t°, влажность, подвижность и прозрачность) и наконец тяжесть самого труда. Большое значение имеет и площадь облучаемой поверхности тела; в этом отношении на производстве наблюдаются резкие различия. Особенно тягостным бывает облучение со всех сторон, что например имеет место при выгрузке обожженных изделий из фарфорово- фаянсовых горнов. Для каждого производства существуют вполне характерные комбинации перечисленных выше условий с присущей ему же интенсивностью излучения; это оказывает влияние и на чувствительность рабочих к воздействию последнего, вследствие чего и оценка влияния Л. э. на рабочих у разных авторов различна. Отмечаются также различия в чувствительности кожи к воздействию облучений различного спектрального состава: лучи с более короткой волной {напр, солнечные) переносятся легче. В основе этих различий лежит разная способность этих лучей проникать в глубь тканей тела. Наибольшей проникающей способностью, по Sonne, обладают красные лучи видимого спектра. Лучи видимого света проникают в глубь тканей и поглощаются только там. При учете теплового эффекта Л.э. на организм рабочего различают местное действие на кожу, общее действие на весь организм, преимущественно на терморегуляцию, а также специфическое действие на орган зрения.-При местном действии на кожу мы имеем дело с тепловым эффектом поглощенной радиации со всеми вытекающими отсюда последствиями: поднятием t° кожи, покраснением, потооделением, ощущением тепла при малых интенсивностях, могущим при больших интенсивностях перейти в болезненное обжигающее ощущение, а затем в ожог первой и второй степени с образованием пузырей. Явлений фотохим. характера, как при воздействии ультрафиолетовых лучей,здесь нет; отсутствует также характерный для последних лятентный период; эритема на коже появляется сейчас же после облучения и легко исчезает, если не переходит в ожог. Темп, кожи поднимается, доходя при длительных степенях облучения до 38° и выше; при облучениях большей интенсивности за первоначальным нагревом кожи следует потоотделение, что вызывает понижение ее t°. В результате повторных облучений развивается пигментация кожи (Ullmann); при длящемся годами воздействии развивается хрон. гиперемия кожи, на отдельных местах образуются сосудистые расширения, и в заключение может получиться атрофия кожи. Вопрос о развитии в результате длительного воздействия Л. э. кожных новообразований еще не выяснен.- Наблюдения над общим действием Л. э. на организм рабочих велись преимущественно в производственных условиях, где чрезвычайно трудно выделить ее специфический эффект, т. к. одновременно на организм рабочего действуют и другие мощные факторы: высокая t° окружающего воздуха и тяжелый физ. труд. Воздействие это сказывается особенно ясно в нарушении терморегуляции, в усиленном потоотделении, достигающем иногда 9-10 л в течение восьмичасового рабочего дня, со всеми вытекающими отсюда последствиями нарушения водно-солевого обмена. Общая нагрузка сердечно-сосудистой системы у работающих в горячих цехах при наличии Л. э., как показывает ряд наблюдений, достигает чрезвычайно больших степеней. Так напр. Арка-диевский наблюдал у кочегаров, производивших чистку топок в течение 9-26 мин. при напряженности радиации от 5 до 11 калорий и при резких температурных колебаниях воздуха (от- 1,5° до +28°), следующие явления: учащение пульса до 180-200 ударов в 1 минуту, дыхания до 39-42 в минуту; t° тела доходила до 38-40°, кровяное давление падало на 20-30 мм, рабочие жаловались на головокружение, одышку, сердцебиение и т. д.; кожные покровы и склера сильно краснели, рабочий обливался потом. Все эти характерные для состояния перегревания организма явления очевидно под воздействием Л. э. значительно усиливаются, выделить однако ее специфическую роль затруднительно. Весь метеорологическ. комплекс горяч, цехов, неравномерность нагревания отдельных поверхностей тела, сквозняки и т. д. создают благоприятные условия для термических травм; при особо же неблагоприятных условиях может наступить при перегревании всего организма тепловой удар.--Действие Л. э. на глаза в первую очередь сводится к воздействию больших яркостей источников Л. э. Причина столь часто описанной катаракты стеклодувов и рабочих горячих цехов вполне точно не установлена. Признаваемое большинством авторов происхождение ее от воздействия коротких инфракрасных лучей, т. н. лучей Фохта, с длиной волны не свыше 1,5 р. Краупа оспаривает (см. Катаракта). Для устранения вредного воздействия Л. э. на глаза применяют специальные защитные очки (см.). Борьба с вредным влиянием Л. э. на производстве ведется с помощью мер, способствующих ослаблению радиации: ограждение ее источников, термоизоляция, щиты и экраны, паровые и водяные завесы; на теле рабочего спецодежда и другие индивидуальные защитные приспособления (рукавицы, фартуки и т. п.); либо наконец применяют непосредственное охлаждение поверхности тела рабочего при помощи специальных обдувающих вентиляционных установок:(см. также Горячие цеха). Эффективность всех этих мероприятий в значитель- ной степени зависит от характера остальных метеорол. условий на рабочем месте, почему в этой борьбе первоочередную роль играют также все мероприятия, способствующие понижению t° окружающего воздуха. Порядок применения защитных мероприятий зависит в каждом случае от конкретных производственных условий. Л. э. втерапи и-см. Светолечение. Лит.: Мищенко И., Влияние лучистой энергии на белковую молекулу, Ж. эксп. биол. и мед., 1927, № 17; Неменов М., Рентгенология, т. I, М.-Л., 1925; Успехи эксперим. биологии, т. VIII, вып. 4, 1929 (ряд статей П. Ракицкого и др.); Фрай-фельд А., Лечение красными и инфракрасными лучами, Физиотерапия, 1927, № 5-6; X в о л ь-сон О., Физика наших дней, стр. 41-71, М.-Л., 1928; о н ж е, Основания учения о лучистой энергии (глава в книге-Фототерапия, П., 1916); CobetR., Die Hauttemperatur des Menschen, Erg. d. Physio-logie, B. XXV, 1926; Handbuch der gesamten Strah-lenheilkunde, Biologie, Pathologie u. Theraple, hrsg. v. P. Lazarus, B. I-II, Munchen, 1928 (лит.); H a u s-mann W., Grundzuge der Lichtbiologie und Licht-pathologie, Berlin, 1923; Kahler K., Messme-thoden der Sonnen- und Himmelstrahlung (Hndb. der biol. Arbeitsmethoden, hrsg. v. E. Abderhalden, Abt. 2, T. I, B.-Wien, 1923); L i n k e F., Die Sonnen-und Himmelstrahlung, Strahlentherapie, B. XXVIII, H. 1, 1928,- Pincussen L., Biologische Licht-wirkungen, Erg. d. Physiologie, B. XIX, 1921; о н ж е, Biologische Strahlenwirkung (Hndb. d. Biochemie, hrsg. v. C. Oppenheimer, B. VII, Jena, 1926); Son-n e C, Physiologische u. therapeutische Wirkungen des kunstlichen Lichts, Strahlentherapie, B. XX, 1925. Тепловой эффект в производственных условиях.- Галанин Н., Сравнительно - санитарная оценка труда при плавке стали на электро- и тигельно-литейных печах (Труды Ленингр. института гигиены труда и техники безопасности, т. II, в. 3, Л., 1928); Материалы Свердловского кабинета по изучению проф. заболеваний и Уральского обл. отд. труда, в. 1-Труд и здоровье мартеновских рабочих, Свердловск, 1928; Оздоровление труда и революция быта, Труды ин-та им. Обуха, в. 27 - Сан.-клин. характеристики профессий горячих цехов, М., 1927; С т о ж-к о в а-Г ольдфарб Н., Сравнительная оценка физиологических данных при работе на электрических и тигельных печах (Труды Ленингр. ин-та гигиены труда и техники безопасности, т. II, в. 3, Л., 1928); С у т к о в а я А. и Г у щ и н И., К вопросу о действии высокой t° и лучистой энергии на центр, нервную систему, Гигиена труда, 1928, № 10; Труды Ленинградского губ. отд. труда, т. I, в. 1- Лучистая энергия, Л., 1927; Труды и материалы ■Укр. гос. ин-та патологии и гигиены труда, в. 7- Сталинский филиал, Сталин, 1928; Ульман К., Проф. повреждения кожи, вызываемые действием высокой температуры (глава в книге-М. Оппенгейм, Профессиональные болезни кожи, т. I, в. 1, М., 1Я25),* К г аир а Е., Der Glasblaserstar, Munchen, 1928 (лит.).С. Бродский. Н. Розенбаум.

Воздействие на микроорганизмы различных форм лучистой энергии проявляется по-разному. В основе действия лежат те или иные химические или физические изменения, происходящие в клетках микроорганизмов и в окружающей среде.

Воздействие лучистой энергии подчиняется общим законам фотохимии – изменения могут быть вызваны только поглощенными лучами. Следовательно, для эффективности облучения большое значение имеет проникающая способность лучей.

Свет. В природе микроорганизмы постоянно подвергаются воздействию солнечной радиации. Свет необходим для жизни только фотосинтезирующих микробов, использующих световую энергию в процессе ассимиляции углекислого газа. Микроорганизмы, не способные к фотосинтезу, хорошо растут в темноте. Прямые солнечные лучи губительны для микроорганизмов; даже рассеянный свет подавляет в той или иной мере их рост. Однако развитие многих плесневых грибов в темноте протекает ненормально: при постоянном отсутствии света хорошо развивается только мицелий, а спорообразование тормозится.

Патогенные бактерии (за редким исключением) менее устойчивы к свету, чем сапрофитные.

Известно, что лучистая энергия переносится «порциями» – квантами. Действие кванта зависит от содержания в нем энергии. Количество энергии изменяется в зависимости от длины волны: чем она больше, тем меньше энергия кванта.

Инфракрасные лучи (ИК-лучи) обладают сравнительно большой длиной волны. Энергия этих излучений недостаточна, чтобы вызвать фотохимические изменения в поглощающих их веществах. В основном она превращается в тепло, что и оказывает губительное действие на микроорганизмы при использовании ИК-излучений для термической обработки продуктов.

Ультрафиолетовые лучи. Эти лучи являются наиболее активной частью солнечного спектра, обусловливающей его бактерицидное действие. Они обладают высокой энергией, доста-

точной для того, чтобы вызвать фотохимические изменения в поглощающих их молекулах субстрата и клетки.

Наибольшим бактерицидным действием обладают лучи с длиной волны 250–260 нм.

Эффективность воздействия УФ-лучей на микроорганизмы зависит от дозы облучения, т. е. от количества поглощенной энергии. Кроме того, имеет значение характер облучаемого субстрата: его рН, степень обсеменения микробами, а также температура.

Очень малые дозы облучения действуют даже стимулирующе на отдельные функции микроорганизмов. Более высокие,

но не приводящие к гибели дозы вызывают торможение отдельных процессов обмена, изменяют свойства микроорганизмов, вплоть до наследственных изменений. Это используется на практике для получения вариантов микроорганизмов с высокой способностью продуцировать антибиотики, ферменты и другие биологически активные вещества. Дальнейшее увеличение дозы" приводит к гибели. При ■ дозе ниже смертельной возможно восстановление (реактивация) нормальной жизнедеятельности.


Различные микроорганизмы неодинаково чувствительны к одной и той же дозе облучения (рис. 24, 25).

Среди бесспоровых бактерий особенно чувствительны к облучению пигментные бактерии, выделяющие пигмент в окру-

жающую среду. Пигментные бактерии, содержащие каротино-идные пигменты, чрезвычайно стойки, так как каротиноидные пигменты обладают защитными свойствами против УФ-лучей.

Споры бактерий значительно устойчивее к действию УФ-лучей, чем вегетативные клетки. Чтобы убить споры, требуется в 4–5 раз больше энергии (см. табл. 9). Споры грибов более выносливы, чем мицелий.

Гибель микроорганизмов может быть следствием как непосредственного воздействия УФ-лучей на клетки, так и неблагоприятного для них изменения облученного субстрата.

УФ-лучи инактивируют ферменты, они адсорбируются важнейшими веществами

клетки (белками, нуклеиновыми кислотами) и вызывают изменения – повреждение их молекул. В облучаемой среде могут образоваться вещества (перекись водорода, озон и др.), губительно действующие на микроорганизмы.

В настоящее время УФ-лучи довольно широко применяют на практике. Искусственным источником ультрафиолетового излучения чаще служат аргонно-ртутные лампы низкого давления, называемые бактерицидными (БУВ-15,

Ультрафиолетовыми лучами дезинфицируют воздух холодильных камер, лечебных и производственных помещений. Обработка УФ-лучами в течение 6 ч уничтожает до 80 % бактерий и плесеней, находящихся в воздухе. Такие лучи могут быть использованы для предотвращения инфекции извне при розливе, фасовке и упаковке пищевых продуктов, лечебных препаратов, а также для обеззараживания тары, упаковочных материалов, оборудования, посуды (в предприятиях общественного питания).

В последнее время бактерицидные свойства УФ-лучей успешно применяют для дезинфекции питьевой воды.

Стерилизация пищевых продуктов с помощью УФ-лучей затрудняется их низкой проникающей способностью, в связи с чем действие этих лучей проявляется только на поверхности или в очень тонком слое. Тем не менее известно, что облучение охлажденных мяса, мясопродуктов удлиняет срок их хранения в 2 3 раза.

Мы не случайно начинаем обзор именно с данного экологического фактора. Лучистая энергия солнца, или солнечная радиация,- основной источник тепла и жизни на нашей планете. Только благодаря этому в далеком прошлом на Земле органическая материя могла зародиться и в процессе эволюции достигнуть тех степеней совершенства, которые мы наблюдаем в природе в настоящее время. Основные свойства лучистой энергии как экологического фактора определяются длиною волн. На этой основе в пределах всего светового спектра различают видимый свет, ультрафиолетовую и инфракрасную его части (рис. 10). Ультрафиолетовые лучи оказывают химическое действие на живые организмы, инфракрасные - тепловое.

Рис. 10. Спектры солнечного излучения в. различных условиях (по: Одум, 1975).
1 - не измененное атмосферой; 2 - на уровне моря в ясный день; 3 - прошедшее через сплошную облачность; 4 - прошедшее через полог растительности.

К основным параметрам экологического воздействия данного фактора принадлежат следующие: 1) фотопериодизм - закономерная смена светлого и темного времени суток (в часах); 2) интенсивность освещения (в люксах); 3) напряжение прямой и рассеянной радиации (в калориях на единицу поверхности в единицу времени); 4) химическое действие световой энергии (длина волн).

Солнце непрерывно излучает огромное количество лучистой энергии. Ее мощность, или интенсивность радиации, на верхнем пределе атмосферы составляет от 1,98 до 2,0 кал/см 2 -мин. Этот показатель называют солнечной постоянной. Впрочем, солнечная постоянная, по-видимому, может несколько изменяться. Отмечено, что за последние годы яркость Солнца увеличилась приблизительно на 2%. По мере приближения к поверхности Земли солнечная энергия претерпевает глубокие преобразования Большая ее часть задерживается атмосферой. Далее на пути световых волн встает растительность, и если она представляет многоярусное сомкнутое древесное насаждение, то тогда до поверхности почвы доходит очень небольшая часть первоначальной солнечной энергии. Под пологом густого букового леса это количество в 20-25 раз меньше, чем на открытом месте. Но дело не только в резком уменьшении количества света, но и в том, что в процессе проникновения в глубь леса меняется спектральный состав света. Следовательно, он претерпевает качественные изменения, весьма существенные для растений и животных.

Говоря об экологическом значении света, надо подчеркнуть, что самое главное здесь -его роль в фотосинтезе зеленых растений, ибо результатом является создание органического вещества, растительной биомассы. Последняя представляет первичную биологическую продукцию, от использования и трансформации которой зависит все остальное живущее на Земле. Интенсивность фотосинтеза сильно изменяется в разных по географическому положению районах и зависит от сезона года, а также от местных экологических условий. Дополнительное освещение позволяет существенно повышать прирост даже древесно-кустарниковых пород, не говоря о травянистых растениях. И. И. Никитин в течение 10 дней проращивал желуди при непрерывном освещении, затем 5 мес. выращивал проростки на свету яркостью 4 тыс. лк. В итоге дубки достигли высоты 2,1 м. После пересадки в грунт 8-летний подопытный дуб давал годовой прирост в высоту 82 см, тогда как контрольные деревца - только 18 см.

Примечательно, что хотя жизнедеятельность и продуктивность животных находятся в прямой (у фитофагов) или косвенной (у зоофагов) зависимости от первичной продукции растений, тем не менее связь менаду последними и животными носит далеко не односторонний характер. Установлено, что животные-фитофаги, например лоси, поедая зеленую растительную массу и повреждая при этом фотосинтезирующие органы, способны
заметно снизить интенсивность фотосинтеза и продуктивность растений. Так, в Центрально-Черноземном заповеднике (Курская обл.) лоси съели всего 1-2% фитомассы молодых дубняков, но их продуктивность упала на 46%. Таким образом, в системе кормовое растение - фитофаг налицо и прямая, и обратная связи.

Огромную роль в жизни всех живых существ играет фотопериодизм. По мере изучения этого фактора выясняется, что фотопериодическая реакция лежит в основе очень многих биологических явлений, будучи прямым определяющим их фактором или же выполняя сигнальные функции. Выдающееся значение фотопериодической реакции в большой мере обусловлено ее астрономическим происхождением и в силу этого высокой степенью стабильности, чего, например, не скажешь о температуре среды, которая тоже чрезвычайно важна, но крайне неустойчива.

Уже самый факт разделения животных на две больших группы по времени активности - на дневных и ночных - наглядно свидетельствует об их глубокой зависимости от фотопериодических условий. О том же говорит установленная в 1920 г. американскими учеными У. Гарнером и Г. Аллардом закономерность, согласно которой растения по отношению к свету и температуре делятся на виды длинного и короткого дня. Позднее было выяснено, что аналогичная фотопериодическая реакция свойственна также животным и, следовательно, носит общеэкологический характер.

Закономерное изменение по сезонам года продолжительности светового дня обусловливает время начала состояния диапаузы многочисленных видов насекомых и других членистоногих, в частности клещей. Путем тонких экспериментов А. С. Данилевский с сотрудниками доказали, что диапауза стимулируется именно сокращением дня, а не понижением температуры воздуха, как считалось ранее (рис. 11). Соответственно этому закономерное увеличение продолжительности светового дня весною служит четким сигналом для прекращения состояния диапаузы. При этом видовые популяции, обитающие на разных широтах, отличаются специфическими фотопериодическими требованиями. Например, для бабочки щавелевой стрельчатки (A crony eta rumicis) , в Абхазии необходима продолжительность дня не менее 14 ч 30 мин, в Белгородской области-16 ч 30 мин, в Витебской области-18 ч и под Ленинградом-19 ч. Иными словами, с продвижением к северу на каждые 5° широты продолжительность дня, необходимая для выхода из диапаузы, у данного вида удлиняется примерно на полтора часа.


Рис. 11. Фотопериодическая реакция длиннодневного типа - бабочки-капустницы (1) и кароткодневного типа - тутового шелкопряда (2) (по: Данилевский, 1961).

Таким образом, фотопериодизм является основным фактором сезонной активности членистоногих. Более того, аналогичные исследования ботаников показали, что многие явления в сезонной жизни растений, динамика их роста и развития тоже относятся к фотопериодическим реакциям. Например, фотопериодический фактор служит сигналом для заблаговременной подготовки растений к зиме, независимо от состояния погоды. Все это делает фотопериодизм весьма существенным фактором при интродукции сельскохозяйственных растений в новые районы, при их культивировании в теплицах и т. д.

Наконец, сопоставление результатов экспериментов по фотопериодизму насекомых-фитофагов и их кормовых растений выявило глубокую между ними взаимозависимость. На воздействие одного и того же экологического фактора те и другие отвечают сходным образом, следовательно, их трофические связи имеют под собой глубокую эколого-физиологическую основу.

Изучение фотопериодических реакций высших позвоночных животных принесло тоже чрезвычайно интересные результаты. Так, у пушных зверей осенью развивается все более густой и пышный волосяной покров. Зимой он достигает наибольшего развития и максимальных термоизолирующих свойств. Эти защитные функции меха усиливаются толстым слоем жира, образующимся под кожей в конце лета и осенью. Зимой упомянутые морфофизиологические адаптации функционируют в полной мере. Издавна считалось, что основным фактором, определяющим сезонное развитие меха и жира, является температура воздуха, ее падение в осенне-зимние месяцы. Однако эксперименты продемонстрировали, что пусковой механизм данного процесса связан не столько с температурой, сколько с фотопериодизмом. В лабораторном виварии и даже на пушной ферме можно поместить американских норок или других зверей в клетки с регулируемым освещением и начиная с середины лета искусственно сокращать световой день. В результате процесс линьки у подопытных животных начинается значительно раньше, чем в природе, пойдет интенсивнее и, соответственно, завершится не к зиме, а в начале осени.

На фотопериодической основе покоится и важнейшее сезонное явление в жизни перелетных птиц - их миграции и тесно с ними связанные процессы линьки оперения, накопления жира под кожей и на внутренних органах и др. Конечно, все это - приспособления к перенесению неблагоприятных температурных и кормовых условий путем «избегания» их. Однако и в данном случае основную сигнальную роль играют изменения не температурного, а светового режима - сокращение продолжительности дня, что можно доказать путем экспериментов. В лаборатории, действуя на фотопериодическую реакцию птиц, не слишком трудно привести их в специфическое предмиграционное состояние, а затем - в миграционное возбуждение, хотя температурные условия останутся стабильными.

Оказывается, фотопериодический характер носит также цикличность половой деятельности животных, цикличность их размножения. Пожалуй, это особенно удивительно, поскольку биология размножения принадлежит к свойствам организма, наиболее тонко сформированным, обладающим наиболее сложной координацией взаимосвязей.

Опытами над многими «идами птиц и млекопитающих доказано, что путем увеличения продолжительности светового дня можно активизировать гонады (рис. 12), привести животных в состояние полового возбуждения и добиться продуктивного спаривания даже в осенне-зимние месяцы, если, конечно, положительную реакцию на световое воздействие обнаружат оба пола. Между тем самки у некоторых видов (например, воробьев) в этом отношении оказываются значительно более инертными, чем самцы, и требуют дополнительной стимуляции этологического порядка.


Рис. 12. Влияние света на развитие гонад у самцов и самок домового воробья, забитых после содержания при разных условиях (по: Поликарпова, 1941).
а - с воли 31 января; б - из камеры с комнатной температурой 29 января; в - из камеры с добавочным светом 28 января.

Некоторым млекопитающим - соболю, кунице, ряду других видов куньих, а также косуле - свойственна интересная особенность биологии размножения. У них оплодотворенное яйцо сначала не имплантируется в стенку матки, а <в течение длительного времени находится в состоянии покоя, так называемой латентной стадии. У соболя эта стадия продолжается несколько месяцев и лишь приблизительно за полтора месяца до рождения щенков происходит имплантация яйца и очень быстрое эмбриональное развитие. Таким образом, беременность распадается как бы на длительный период предбеременности, или латентный, и короткий, порядка 35-45 дней, период вынашивания, т. е. собственно эмбрионального развития. Благодаря этому замечательному приспособлению животные получают возможность с минимальными энергетическими затратами переживать тяжелое зимнее время. Оказывается, что продолжительность латентного периода также регулируется фотопериодической реакцией и, если воспользоваться последней, может быть существенно сокращена.

Весьма велико влияние соотношения периодов освещения и темноты и изменения на протяжении суток интенсивности освещения на активность животных. Например, дневные птицы на рассвете пробуждаются при определенной по своей интенсивности «освещенности пробуждения», зависящей от высоты солнца по отношению к горизонту. Наступление надлежащей «освещенности пробуждения» служит сигналом, стимулирующим активизацию птиц. Дрозды начинают подавать признаки жизни при 0,1 лк, когда в лесу еще почти совсем темно; кукушка требует для своего пробуждения 1 лк, славка-черноголовка - 4, зяблик-12, домовый воробей - 20 лк. В соответствии с этим при хорошей погоде птицы в данной местности пробуждаются в определенное время и в известном порядке, что позволяет говорить о существовании «птичьих часов». Например, в учлесхозе «Лес на Ворскле» Белгородской области в мае-июне первые голоса птиц раздаются в среднем в следующее время: соловей - в 2 ч 31 мин, черный и певчий дрозды - 2 ч 31 мин, кукушка - 3 ч 00 мин, славка-черноголовка - 3 ч 30 мин, большая синица - 3 ч 36 мин, полевой воробей- 3 ч 50 мин.

Суточные изменения режима освещенности оказывают глубокое влияние на жизнедеятельность растений,и прежде всего на ритм и интенсивность фотосинтеза, который прекращается в темные часы суток, в непогоду и в зимнее время (рис. 13).

Наконец, солнечная энергия может играть очень важную роль как источник тепла, воздействуя на живые существа непосредственно или глубоко влияя на их среду обитания в локальном или глобальном масштабах.

В общем из приведенных выше фрагментарных сведений видно, что световой фактор играет в жизни организмов чрезвычайно важную и разностороннюю роль.


Рис. 13. Зависимость фотосинтеза от световой энергии у разных растительных популяций (по: Одум, 1975).
1 - деревья в лесу; 2 - листья, освещенные солнцем; 3 - затененные листья.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «ezvezdnaya.ru» — Отношения. Маникюр. Звезды. Рецепты. Уход за кожей