Обмен энергии в организме человека

Прямая и непрямая калориметрия. и энергии, по существу, единый процесс. В итоге сложных превращений, совершающихся в организме, образуется тепло.

Определить количество освобождающейся в организме энергии можно методами прямой и непрямой калориметрии.

Рис. 103. Схема калориметра.

Продуцируемое организмом человека тепло измеряется с помощью термометров 1 и2 по нагреванию воды, протекающей по трубам в камере 4. Количество протекающей воды измеряют в баке 3. Через окно 5 подают пищу и удаляют экскременты. Посредством насоса 6 воздух извлекают из камеры и прогоняют через баки с серной кислотой (7 и 9) для поглощения воды и с натронной известью (8) для поглощения углекислого газа. подают в камеру из баллона 10 через газовые часы 11. Давление воздуха в камере поддерживают на постоянном уровне посредством сосуда с резиновой мембраной (12)

Прямую калориметрию производят с помощью специальных аппаратов - калориметрических камер (рис. 103).

Вкамере стенки не проводят тепло. По потолку камеры проходит система трубок с водой. Человека на определенное время помещают в такую камеру. Тепло, выделяемое организмом, нагревает воду в системе трубок. Измеряют температуру поступающей и вытекающей из камеры воды; определяют разность температур и количество протекшей воды. Это дает возможность прямо получить данные о количестве энергии, выделенной организмом в единицу времени.

Показатели, полученные методом прямой калориметрии, точные. Но метод этот весьма сложен, громоздок, а главное - не дает возможности измерять энергетические затраты организма при любых видах деятельности человека (езда на велосипеде^ работа у доменной печи и др.).

Проще производить расчеты расхода энергии методом непря мой калориметрии. Источником энергии в организме служат окислительные процессы, при которых потребляется и образуется углекислый газ. Чем больше организм освобождает, энергии, тем интенсивнее в нем идут окислительные процессы. Следовательно, тем больше организм потребляет кислорода и выделяет углекислого газа. Поэтому об энергетических процессах в организме можно судить не только по количеству энергии, отдаваемой в окружающую среду, как это делают при прямой калориметрии, но и по количеству поглощенного кислорода и выделенного углекислого газа, т. е. по величине газообмена.

Для определения количества поглощенного кислорода и выделившегося углекислого газа пользуются различными приспособлениями. В производственных и учебных условиях для этой цели используют маски. Маска через систему клапанов соединена с мешком из воздухонепроницаемой ткани (рис. 104), укрепляемым на теле испытуемого. Клапаны дают возможность свободно вдыхать атмосферный воздух, а выдыхаемый воздух направляется в мешок. Выдохнутый воздух из мешка пропускают через газовые часы для определения его объема, а затем химическим путем определяют в нем процентное содержание кислорода и углекислоты.

Поглощаемый организмом идет на окисление белков, жиров и углеводов. Для окисления 1 г белка, жира или углеводов требуется разное количество кислорода, а следовательно, при этом освобождается и разное количество энергии (табл. 19).

Таблица 19

Образование энергии при окислении веществ в организме

, окисляющиеся в организме При окислении 1 г питательных веществ Количество освобождающейся

энергии (в Дж)

потребляется кислорода (в л) выделяется углекислого газа (в л) при потреблении 1 л кислорода при выделении 1 л

углекислого газа

Белки

Жиры

0,970

2,030

0,830

0,829

1,431

0,829

18,6

19,8

21,1

23,8

27,8

21,1

Из таблицы видно, что потребление 1 л кислорода и выделение 1 л углекислого газа сопровождается образованием определенного количества энергии. Однако при этом необходимо знать, какие вещества-белки, жиры или - окислялись в организме. Для этого определяют величину дыхательного коэффициента.

Рис. 104.

Дыхательным коэффициентом называют отношение объема выделенного организмом углекислого газа к объему поглощен ного кислорода. Дыхательный коэффициент различен при окислении белков, жиров и углеводов. Окисление углеводов (глюкозы, например) можно выразить формулой

С 6 Н 12 О 6 + 6О 2 = 6СО 2 + 6Н 2 О

Из уравнения видно, что при окислении глюкозы числа молекул образовавшегося углекислого газа и поглощенного кислорода равны. Следовательно, дыхательный коэффициент при оки слении углеводов равен единице (6СО 2: 6О 2 = 1)

В молекуле жира мало внутримолекулярного кислорода, поэтому на окисление ее требуется больше кислорода. Дыхательный коэффициент в этом случае меньше 1 (0,7). При окислении белков дыхательный коэффициент равен 0,8. При смешанной пище, которую обычно употребляет человек, дыхательный коэффициент составляет 0,85-0,9.

При окислении белков, жиров и углеводов (при потребления 1 л кислорода) освобождается разное количество энергии. Следовательно, при разном дыхательном коэффициенте количество освобождающейся энергии при поглощении 1 л кислорода будет различным.

Эта зависимость видна из таблицы 20.

Таблица 20

Зависимость количества энергии, освобождаемой при окислении, от величины дыхательного коэффициента

Зная величину газообмена, можно вычислить расход энергии в организме. Поступают при этом так.

По количеству потребленного кислорода и выделившегося углекислого газа определяют дыхательный коэффициент. Затем по таблицам устанавливают количество энергии, образующейся при поглощении 1 л кислорода (или при выделении 1 л углекислого газа) при данном дыхательном коэффициенте. Полученную величину умножают на количество литров поглощенного кислорода. Таким образом определяют количество энергии, выделенной человеком за определенное время.

Метод назван непрямой калориметрией потому, что мы о количестве энергии; выделенной организмом, судим по количеству поглощенного кислорода (или выделившегося углекислого газа) в единицу времени.

Основной обмен. Даже в условиях полного покоя человек расходует некоторое количество энергии. В организме непрерывно тратится энергия на физиологические процессы, которые не останавливаются ни на минуту.

Минимальный для организма уровень обмена веществ и энергетических затрат называют основным обменом. Основной обмен определяют у человека в состоянии мышечного покоя - лежа, натощак, т. е. через 12-16 ч после еды, при температуре окружающей среды 18-20°С (температура комфорта). У человека среднего возраста основной обмен составляет 4187 Дж на 1 кг массы в 1 ч. В среднем это 7 140000-7560000 Дж в сутки. Для каждого человека величина основного обмена относительно постоянна.

Основной обмен у детей интенсивнее, чем у взрослых, так как на единицу массы у них приходится относительно большая поверхность тела, чем у взрослого человека. Значительно преобладают также процессы ассимиляции над процессами диссимиляции.

Энергетические затраты на рост тем больше, чем моложе ребенок. Так, расход энергии, связанный с ростом, в возрасте трех месяцев составляет 36%, в возрасте шести месяцев-26%, девяти месяцев-21% общей калорийности пищи.

Колебания основного обмена и большая его интенсивность в младшем возрасте ясно выражены при расчете как на единицу массы, так и на единицу поверхности (табл. 21).

Таблица 21

Изменение основного обмена у детей

Возраст Величина основного обмена (в Дж)
на 1 кг массы на 1 м 2 поверхности
мальчики девочки мальчики девочки
8 240660 200 340 6 190 800 5 106 400
9 220080 189000 5 821 200 5019000
10 201 600 180600 5 392 800 4 893 000
11 202020 186060 5 586 000 4 118 800
12 173 640 169 260 5103000 4 946 800
13 14 163800 151 200 4 851 000 4 557 000
166480 142 800 4 909 800 4510 000
15 151 200 132 300 4 799 000 4 477 200
16 140280 115 500 4 897 000 4 054 200
17 129 360 113 400 4 968 600 3 864 000
18 118 020 106260 4 835 200 3 604 400

Основной обмен на 1 кг массы у взрослого человека составляет 96600 Дж. Таким образом, у детей 8 -10 лет основной обмен в 2-2,5 раза выше, чем у взрослых.

Величина основного обмена у девочек несколько ниже, чем у мальчиков. Это различие начинает проявляться уже во второй половине первого года жизни.

Выполняемая работа у мальчиков влечет более высокий расход энергии, чем у девочек.

Определение величины основного обмена часто имеет диагностическое значение. Повышается основной обмен при избыточной функции щитовидной железы и некоторых других заболеваниях. При недостаточности функции щитовидной железы, гипофиза, половых желез основной обмен снижается.

Расход энергии при мышечной деятельности

Чем тяжелее мышечная работа, тем больше энергии тратит человек. У школьников подготовка к уроку, урок в школе требуют энергий на 20-50% выше, чем энергия основного обмена.

При лабораторных занятиях, ручном труде, несложной гимнастике, играх средней подвижности затраты энергии на 75- 125% превышают величины основного обмена.

При ходьбе затраты энергии на 150-170% превышают основной обмен. При беге, подъеме по лестнице затраты энергии в 3-4 раза превышают основной обмен.

Тренировка организма значительно сокращает расход энергии на выполняемую работу. Это связано с уменьшением числа мышц, принимающих участие в работе, а также с изменениями дыхания и кровообращения.

При механизации труда в сельском хозяйстве и промышленности, внедрении машинной техники снижаются затраты энергии работающими людьми. При умственном труде энергетические затраты ниже, чем при физическом.

- 34.18 Кб

Введение

Все реакции и процессы, которые происходят в нашем организме называются - метаболизм или обмен веществ.

Что бы все обменные процессы в нашем организме происходили нормально, организм должен получать достаточное количество калорий, из которых и берется та самая энергия для всех реакций и обменов.

Даже когда мы спим, наш метаболизм продолжает работать и обмен веществ не прекращается. Метаболизм в состоянии покоя называется - основной обмен веществ, он показывает, сколько калорий Вы тратите в спокойном состоянии. Наш метаболизм зависит от многих факторов, таких как: физическая активность, пол, возраст, процентное соотношение жировой массы и мышечной и т.д.

Обмен веществ в организме

Обмен веществ в организме – один из основных условий здоровья нормальной жизнедеятельности человека. Дело в том, что организм человека не может существовать без питательных веществ, кислорода, воды, минеральных солей, витаминов. Они нужны для образования и обновления клеток, для образования энергии, благодаря которым происходит обеспечение жизненных процессов.

В клетках организма происходит синтез белков, жиров, углеводов, расщепление сложных органических соединений, а также выделение продуктов распада – углекислого газа, воды, мочевины и т.д.

Одним словом, обмен веществ в организме – это совокупность биохимических процессов синтеза, расщепления и выделения веществ.

Обмен веществ в организме – совокупность процессов

Обмен веществ в организме – это единство процессов ассимиляции и диссимиляции. Ассимиляция – синтез сложных органических молекул.

Диссимиляция – расщепление сложных органических молекул. При диссимиляции происходит выделение энергии, а при ассимиляции, наоборот, происходит накопление энергии.

Единственный строительный материал и источник энергии организма – это органические вещества пищи, которую ежедневно должен потреблять человек. Нарушение энергетического баланса и образовательной способностью клеток приводят к расстройству обмена веществ в организме.

Питание и обмен веществ в организме

Употребление высококалорийной пищи позволяет восполнять в организме вещества и энергию, расходуемые в процессе жизнедеятельности.

Суточные затраты зависят от половой принадлежности, возраста, характера и интенсивности работы, а также общего состояния здоровья организма. Соответственно, люди, чья работа связана с умственным и физическим трудом должны ежедневно употреблять продукты с высокой энергетической ценностью, т.е. пищу, богатую белками, углеводами. У людей, занимающихся физическим трудом, ускоряется белковый обмен. У тех же, кто предпочитает умственный труд, обмен веществ в организме ускоряется при употреблении углеводов.

Нормальный обмен веществ в организме – залог здоровья

Обмен веществ в организме зависит от состояния ЖКТ. При нарушении микрофлоры кишечника, полезные вещества – витамины, минералы, аминокислоты, жиры, белки и углеводы не всасываются и не усваиваются организмом. Даже при высококалорийном питании организм не будет получать нужное количество веществ, и ему нечего будет синтезировать и расщеплять. В результате нарушится энергообмен, процесс формирования новых клеток.

Пробиотик «Бифидум – Жидкий концентрат бифидобактерий» БАГ полностью восстанавливает микрофлору кишечника благодаря свойствам активных бактерий, их количеству и составу среды, в которой они находятся – витамины, 20 аминокислот.

Сами бифидобактерии, попадая в организм, не только создают биопленку, но и выделяют биологически активные вещества, которые способствуют усвоению железа, кальция, других витаминов. Препарат улучшает обмен веществ в организме. Бифидобактерии улучшают липидный обмен (снижает холестерин), улучшают белковый, углеводный и жировой обменные процессы. В результате у человека нормализуется сон, давление, гемоглобин, улучшается или снижается аппетит (в зависимости от нормализации обменных процессов в организме). После употребления препарата человек становится энергичным и бодрым.

Обмен энергией в организме

Материальной основой жизни являются белки. В состав клеток и тканей тела человека входит множество различных белковых веществ. В процессе жизнедеятельности организма они претерпевают сложнейшие изменения, беспрерывно распадаются на составные части и вновь воссоздаются, синтезируются.

На восстановление составных частей клеток, тканей и органов требуются не только исходные материалы - аминокислоты, углеводы и т. д., но и значительное количество энергии. Любое движение, происходящее в живом организме, как бы оно ни проявлялось - всегда требует затраты энергии.

А сколько энергии нужно для выполнения работы, которая идет внутри живого организма! Днем и ночью, например, сокращается и расслабляется сердце. Оно прогоняет по кровеносным сосудам кровь, несущую клеткам и тканям питательные вещества и кислород. Выделение пищеварительных соков, процессы всасывания также требуют затраты энергии. Ведь в течение суток, например, в желудке человека вырабатывается и выделяется более литра желудочного сока, а в кишечник поступает около литра сока поджелудочной железы и столько же кишечного сока и желчи.

Удивительнейшей «работоспособностью» обладает такой орган, как наши почки. За 24 часа здесь фильтруется более 170 литров жидкости - «первичной мочи», из которых почти 169 литров всасывается обратно в кровь. В результате этого сложного процесса фильтрации и обратного всасывания образуется и выделяется всего один - полтора литра мочи, которая содержит конечные продукты обмена веществ.

Таким образом, все физиологические процессы требуют расхода энергии, а следовательно, бесперебойного ее притока. Откуда же черпает организм энергетические ресурсы?

Первичным источником энергии являются продукты питания: белки, жиры и углеводы – наша пища. Она подвергается в организме очень сложной химической обработке, в желудке и кишечнике белки расщепляются на аминокислоты, сложные углеводы (например, крахмал, гликоген) распадаются на более простые, главным образом глюкозу, а из жиров образуются глицерин, жирные кислоты и т. д. Вновь образовавшиеся вещества всасываются в кровь. В процессе расщепления сложных веществ, входящих в состав продуктов питания, выделяется энергия, но в столь незначительном количестве, что оно ни в коей мере не может удовлетворять потребности организма.

Что служит основным источником энергии в нашем организме

Давайте проследим за дальнейшей судьбой веществ, поступивших в кровь. Благодаря чрезвычайно разветвленной сети кровеносных сосудов и капилляров они вместе с кровью попадают во все участки организма. Эти вещества в кровеносном русле постепенно смешиваются с теми, которые образовались в результате распада белков, жиров и углеводов, входящих в состав самих органов и тканей. Вместе они составляют «фонд» разнообразных химических соединений. Очень важно, что из этого «фонда» организм может выбрать все необходимое ему для построения новых клеток, для восстановления разрушенных структур органов, для образования различных пищеварительных соков, «секрета» желез и, наконец, для образования легко « сгорающего» материала, окисление которого обеспечивает необходимые энергетические ресурсы.

Можно ли более точно назвать вещества, образование которых в органах и тканях является подготовкой « горючего»?

ЕДИНАЯ «СЕМЬЯ» КИСЛОТ

Такими веществами являются относительно несложные по структуре органические кислоты. К их числу относится уксусная кислота в особой активной форме, пировиноградная, занимающая центральное место в окислительных процессах, затем янтарная, яблочная, щавелевоуксусная, кетоглутаровая и наконец лимонная.

Все перечисленные органические кислоты составляют как бы «единую» семью, члены которой при окислении последовательно переходили из одной формы в другую. В биологической химии существует специальное название этих окислительно- восстановительных реакций: лимоннокислый цикл.

Интересно отметить, что лимоннокислый цикл - характерная особенность большинства клеток и тканей человека, а также высокоорганизованных животных. Строго определенная последовательность окислительно- восстановительных реакций, происходящих в лимоннокислом цикле, вырабатывалась на протяжении миллионов лет в длительном процессе эволюции, приспособления живого организма к изменяющимся условиям внешней среды.

Последовательность химических превращений в лимонно - кислом цикле обеспечивают белки - ферменты. Они обладают чрезвычайно высокой активностью и поэтому могут ускорять и направлять химические реакции, обеспечивая переход от одного звена лимоннокислого цикла к другому.

Слов нет, все химические превращения лимоннокислого цикла достаточно сложны, и чтобы понять, откуда и как организм берет запасы энергии, необходимо хотя бы схематично рассказать об этих превращениях.

Как же они происходят? Начнем со щавелевоуксусной кислоты. Она - единственная из «семьи» кислот, которая вступает в цель окислительных реакций и выходит из них без изменений. Пировиноградная кислота, образующаяся, например, при распаде глюкозы, превращается в углекислоту и активную форму уксусной кислоты. Последняя, соединяясь со щавелевоуксусной кислотой, образует лимонную, которая затем превращается в кетоглутаровую и угольную. Кетоглутаровая кислота через янтарную и яблочную переходит в щавелевоуксусную и угольную кислоту. Далее все реакции вновь повторяются.

B результате множества строго последовательных химических реакций полностью исчезает пировиноградная кислота. Она окисляется до конечных продуктов - углекислого газа и воды.

Углекислый газ из клеток органов и тканей, где протекало окисление пировиноградной кислоты, переходит в венозную кровь, затем в легочные альвеолы и удаляется из организма вместе с выдыхаемым воздухом.

Вторым, очень важным моментом, связанным, с окислением пировиноградной кислоты, является повторное (пятикратное) отщепление водорода. Здесь следует сказать о наиболее характерной особенности окислительных процессов, происходящих в организме человека, а также животных. Она как раз и заключается в том, что водород не сразу вступает в реакцию с кислородом, доставляемым кровью к клеткам органов и тканей.

В живом организме имеются специальные переносчики водорода. Они как бы принимают его на себя и постепенно, от одного переносчика к другому, переносят водород к кислороду. Благодаря этому энергия образования воды выделяется также постепенно, порциями. А ведь известно, что при соединении водорода с кислородом вода образуется со взрывом - взрывом гремучего газа. Например, было определено, что при образовании 18 граммов воды (ее молекулярный вес-18) освобождается 55 больших калорий. В живом организме энергия образования воды распределяется между многими промежуточными реакциями. Те же 55 больших калорий, конечно, также освобождаются при образовании 18 граммов воды, однако относительно небольшими порциями, которые не могут нанести какой бы то ни было ущерб организму.

Из всех этих расчетов и рассуждений следует один очень важный вывод: наиболее значительнее количество энергии в организме человека, а также высокоорганизованных животных освобождается не при расщеплении белков, жиров м углеводов, входящих в состав пищи в пищеварительном тракте, а в процессе окисления пировиноградной кислоты или других органических веществ при переносе водорода к кислороду, завершающимся образованием воды.

ИСТОЧНИКИ ЭНЕРГИИ В ОРГАНИЗМЕ

Каким же образом освобождающаяся при окислении энергия используется организмом? Приблизительно половина энергии рассеивается в виде тепла. Оно крайне необходимо для поддержания постоянной температуры тела. Остальная часть энергии накапливается в виде богатых энергией фосфорных соединений.

К числу таких соединений относится довольно большое количество веществ, в структуру которых входят непрочно связанные остатки фосфорной кислоты. Под влиянием различных ферментов они легко отщепляются, причем разрыв связей сопровождается освобождением большого количества свободной энергии, которая способна перейти а любой другой вид энергии - в механическую, электрическую, химическую, тепловую и т. д.

Когда человек здоров, в составе его мозга, мышц, внутренних органов содержится достаточное количество богатых энергией фосфорных соединений. Расщепление этих веществ позволяет производить нам мышечную работу, обеспечивает энергию передачи возбуждения по нервным волокнам, дает энергию м для других, весьма различных проявлений жизни.

Возможность образования в живом организме богатых энергией фосфорных соединений за счет энергии окисления была впервые доказана в 1930 году. Это одно из самых замечательных открытий в области биохимической энергетики.

Описание

Все реакции и процессы, которые происходят в нашем организме называются - метаболизм или обмен веществ.

Что бы все обменные процессы в нашем организме происходили нормально, организм должен получать достаточное количество калорий, из которых и берется та самая энергия для всех реакций и обменов.

Обмен энергии между организмом и окружающей средой осуществляется по законам термодинамики. Организм внутри себя постоянно создает негэнтропии (т.е. поддерживает структурность элементов, распадаясь способны выделять энергию). Для этого прежде всего используется энергия, накопленная в продуктах окружающей среды (в виде макроскопических соединений, поступающих с пищей). Вокруг себя организм создает энтропию, выделяя энергию в виде тепла. Энтропия — это потеря структурности с выделением энергии.

Соотношение между энергией, поступающей в организм и количеством энергии, выделяемой им, называется энергетическим балансом. Если этот баланс будет положительным — то энергоносители задерживаются в организме и наоборот.

Выделяют два уровня обмена энергии: основной обмен (00), или тот уровень обменных процессов в организме, который необходим для его функционирования в условиях физиологического покоя. Этот обмен объединяет затраты энергии на биосинтез, в поддержку концентрационных градиентов различных ионов на оболочках клеток и на деятельность внутренних органов (мозга, сердца, дыхательных мышц, печени, почек и др.).. Уровень основного обмена зависит от возраста, пола, массы тела и роста человека и, исходя из этих параметров, определяется по известным в физиологии таблицами Харриса-Бенедикта. Согласно этим таблицам общий уровень основного обмена (00) рассчитывают в зависимости от пола человека как сумму энергетических затрат исходя из массы тела (определяется по табл. А) и возраста и роста человека (определяется по табл. Б Харриса-Бенедикта). Например, девушка в возрасте 17 лет, масса тела которой составляет 46 кг, а рост 156 см имеет 00 = 1095 +201 = 1296 ккал. При отсутствии таблиц Харриса-Бенедикта величину основного обмена (00) можно рассчитывать с помощью уравнений, приведенных в табл. 5.

У детей уровень массы тела значительно больше, чем у взрослых людей, что объясняется более интенсивными процессами биосинтеза в детском возрасте. Известно, например, чтобы «встроить» одну аминокислоту в цепь белковой молекулы требуется энергия двух молекул АТФ (аденозитрифосфорнои кислоты).

У детей до 5 лет за один час на 1 кг массы тела расходуется примерно 14 — 15 кДж (3,45 ккал) энергии, в 10 лет примерно 9 — 10 кДж (2,26 ккал), в 15 лет — 5,3 — 6,0 кДж (1,33 ккал) и у взрослых людей — 4,2 кДж (1 ккал) на 1 кг массы тела в час. У девушек (женщин) основной обмен примерно на 5% ниже , чем у юношей (мужчин). Средние возрастные изменения уровня основного обмена приведены в табл. 6.

Динамика основного обмена с возрастом плотно связана с энергетическими затратами на рост организма. Чем меньше возраст ребенка, тем относительные затраты энергии на рост больше (рис. ЗО). Например, затраты энергии на рост в возрасте 3 месяца составляют 36%, в ​​возрасте 6 месяцев — 26%, 10-12 месяцев — 21% общей энергетической ценности пищи.

Дополнительно к энергию на любые функции, и на внешнюю работу. Затраты энергии при полной жизнедеятельности называются общим обменом.

По данным А. П. Матвеева (2003) употребление белковой пищи повышает уровень обмена на 30%; жирной и углеводистой пищи — на 15%, а обычной смешанной пищи на 30-35%. Выполнение нетрудной работы в быту повышает уровень обмена на 30-60%. Физическая умеренная работа и обычные спортивные тренировки могут повышать уровень обмена в 20-25 раз, т.е. больше чем на 2000%. Умственный труд, который не сопровождается мышечными усилиями и эмоциональным напряжением повышает энергетические затраты всего на 2-3%. Если к умственному труду прилагается эмоциональное напряжение, то энергетические затраты могут расти на 40-90%.

Энергия поступает в виде молекул белков, жиров и углеводов пищи, где происходит ее превращение. Вся энергия переходит в тепло, которое затем выделяется в окружающую среду. Тепло - конечный результат превращения энергии, а также мера энергии в организме. Освобождение энергии в нем происходит в результате окисления веществ в процессе диссимиляции. Освобождающаяся энергия переходит в доступную для организма форму - химическую энергию макроэргических связей молекулы АТФ. Везде, где совершается работа, происходит гидролиз связей молекулы АТФ. Энергетических затрат требуют процессы обновления и перестройки тканей; энергия расходуется при функционировании органов; при всех видах сокращения мышц, при мышечной работе; энергия затрачивается в процессах синтеза органических соединений, в том числе ферментов. Энергетические потребности тканей покрываются, главным образом, за счет расщепления молекулы глюкозы - гликолиза. Гликолиз - это многоступенчатый ферментативный процесс, в ходе которого суммарно выделяется 56 ккал. Однако энергия в процессе гликолиза выделяется не одномоментно, а в виде квантов, каждый из которых составляет примерно около 7.5 ккал, что и способствует ее заключению в макроэргические связи молекулы АТФ.

Определение величины прихода и расхода энергии

Для определения величины прихода энергии в организм необходимо знать, во-первых, химический состав пищи, т.е. сколько граммов белков, жиров и углеводов содержится в пищевых средствах и, во-вторых, теплоту сгорания веществ. Теплота сгорания - это количество тепла, которое выделяется при окислении 1 грамма вещества. При окислении 1 г жира в организме выделяется 9,3 ккал; 1 г углеводов - 4,1 ккал тепла и 1 г белка - 4,1 ккал. Если пища, например, содержит 400 г углеводов, то человек может получить 1600 ккал. Но углеводы должны пройти долгий путь превращений, прежде чем эта энергия станет достоянием клеток. Организм все время нуждается в энергии, и процессы диссимиляции идут беспрерывно. В нем постоянно окисляются собственные вещества, и выделяется энергия.

Расход энергии в организме определяется двумя путями. Во-первых, это так называемая прямая калориметрия, когда в специальных условиях определяют тепло, которое организм выделяет в окружающую среду. Во-вторых, это непрямая калориметрия. Расход энергии рассчитывается на основе вычленения газообмена: определяют количество кислорода, потребленное организмом за определенное время и количество углекислого газа, выделенное за это время. Поскольку выделение энергии происходит в результате окисления веществ до конечных продуктов - углекислот газа, воды и аммиака, то между количеством потребленного кислорода, выделенной энергией и углекислым газом существует определенная взаимосвязь. Зная показания газообмена и калорический коэффициент кислорода, можно рассчитать расход энергии организма. Калорический коэффициент кислорода - это количество тепла, выделяющееся при потреблении организмом 1 литра кислорода. Если окислению подвергаются углеводы, то при поглощении 1 л кислорода высвобождается 5,05 ккал энергии, если жиры и белки - соответственно 4,7 и 4,8 ккал. Каждому из этих веществ соответствует определенная величина дыхательного коэффициента, т.е. величина отношения объема углекислого газа, выделенного за данный промежуток времени, к объему кислорода, поглощенного организмом за этот интервал времени. При окислении углеводов дыхательный коэффициент равен 1, жиров - 0,7, белков - 0,8. Поскольку расщепление различных пищевых веществ в организме происходит одновременно, величина дыхательного коэффициента может варьироваться. Ее среднее значение у человека в норме находится в пределах 0,83-0,87. Зная величину дыхательного коэффициента, можно с помощью специальных таблиц определить количество освобождающейся энергии в калориях. По величине дыхательного коэффициента можно судить и об интенсивности протекания процессов обмена веществ в целом.

Основной обмен

В клинической практике для сравнения интенсивности обмена веществ и энергии у разных людей и выявления его отклонений от нормы определяют величину «основного» обмена, т.е. минимальное количество энергии, расходуемой только на поддержание функции нервной системы, деятельности сердца, дыхательной мускулатуры, почек и печени в состоянии полного покоя. Основной обмен определяют в особых условиях - в утренние часы натощак в положении лежа при полном физическом и психическом покое, не ранее 12-15 часов после последнего приема пищи, при температуре 18-20 °С. Основной обмен - важнейшая физиологическая константа организма. Величина основного обмена составляет примерно 1100-1700 ккал в сутки, а в расчете на 1 квадратный метр поверхности тела он составляет около 900 ккал в сутки. Нарушение любого из этих условий изменяет величину основного обмена обычно в сторону его увеличения. Индивидуальные физиологические различия величины основного обмена у разных людей определяются весом, возрастом, ростом и полом - это факторы, которые определяют величину основного обмена. Основной обмен характеризует исходный уровень потребления энергии, но его нельзя рассматривать как «минимальный», так как величина основного обмена при бодрствовании несколько выше, чем в условиях сна.

Принцип измерения основного обмена

На основании многочисленных определений основного обмена у людей составлены таблицы нормальных величин этого показателя в зависимости от возраста, пола и общей поверхности тела. В этих таблицах величины основного обмена приводятся в килокалориях (ккал) на 1 м 2 поверхности тела за 1 час. Большое влияние на основной обмен оказывают изменения гормональной системы организма, особенно щитовидной железы : при ее гиперфункции основной обмен может превышать нормальный уровень на 80%, при гипофункции основной обмен может быть ниже нормы на 40%. Выпадение функции передней доли гипофиза или коры надпочечников влечет за собой снижение основного обмена. Возбуждение симпатической нервной системы , усиленное образование или введение адреналина извне увеличивают основной обмен.

Расход энергии при работе

Увеличение расхода энергии при работе называют рабочей прибавкой. Расход энергии будет тем больше, чем интенсивнее и тяжелее производимая работа. Умственный труд не сопровождается повышением энергетических затрат. Так, например, решение в уме трудных математических задач приводит к увеличению расхода энергии всего на несколько процентов. Поэтому энергетические траты в сутки у лиц умственного труда меньше, чем у лиц, занимающихся физическим трудом.

Лекция 9. Обмен веществ и энергии в организме. Питание Пластический и энергетический обмен. Обмен энергии в организме. Обмен белков. Азотистое равновесие. Обмен жиров и углеводов. Водно-солевой обмен. Питание. Нормы питания.

Обмен веществ, или метаболизм, — лежащий в основе жизни закономерный порядок превращения веществ и энергии в живых системах, направленный на их сохранение и самовоспроизведение; совокупность всех химических реакций, протекающих в организме. Ф. Энгельс, определяя жизнь, указывал, что ее важнейшим свойством является постоянный ОВ с окружающей внешней природой, с прекращением которого прекращается и жизнь. Т. о. , ОВ — существеннейший и непременный признак жизни.

ОБМЕН ВЕЩЕСТВ И ЭНЕРГИИ Питательные вещества: Белки Жиры Углеводы витамины минеральные вещества Н 2 О О 2 Продукты обмена: СО 2 мочевина и т. д. Н 2 О Тепло. Организм человека Процессы ассимиляции (анаболизма) и диссимиляции (катаболизма)Окружающая среда→ →

Две стороны обмена веществ: Пластический обмен – процессы, направленные на рост и обновление структур организма Энергетический обмен – процессы, направленные на энергообеспечение функций организма (в том числе пластического обмена)

Энергетический обмен включает: энергетический катаболизм – распад субстратов для выработки энергии; энергетический анаболизм – синтез субстратов для запасания энергии. Пластический обмен включает: пластический катаболизм – распад старых структур для их обновления; пластический анаболизм – построение новых структур.

УРОВНИ ИНТЕНСИВНОСТИ ЭНЕРГООБМЕНА КЛЕТКИ: Уровень поддержания целостности клетки — 15% Уровень функциональной готовности клетки — 50% Уровень функциональной активности клетки — 100% ЭНЕРГЕТИЧЕСКИЙ БАЛАНС: Образование Э. = Э. работы + Э. теплопотерь + Э. запас.

Энергетический баланс – это соотношение между количеством энергии, поступающей с пищей, и энергией, расходуемой организмом. Энергетическое равновесие Положительный энергетический баланс Отрицательный энергетический баланс

Общий обмен (ОО) – это суточные энергозатраты на все виды деятельности Общий обмен складывается из: основного обмена (Ос. О) специфически динамического действия пищи (СДДП) рабочей прибавки (РП)

Основной обмен — это суточные энергозатраты организма в условиях покоя. Ос. О определяется в стандартных условиях: — бодрствование — физический (лежа) и психический покой — натощак – через 12 -14 ч после приема пищи (белки исключаются за 2 -3 дня) — в условиях температурного комфорта (18 -20 о С)

ОСНОВНОЙ ОБМЕН – должный и фактический Должный Ос. О – это величина Ос. О, которая должна быть у человека с учетом пола, роста, массы тела и возраста. Определяют: — по таблицам Гарриса и Бенедикта — по формулам Гарриса и Бенедикта — по приближенной формуле (на 1 кг массы тела расходуется 1 ккал в час) ДОс. О = 1 ккал × масса тела × 24 час. — по площади поверхности тела

ОСНОВНОЙ ОБМЕН – должный и фактический Фактический Ос. О — это величина Ос. О, которая имеется у человека в действительности. Определяется методом калориметрии. Определяют % отклонения ФОс. О от ДОс. О. Отклонения ФОс. О от ДОс. О ± 10% норма.

Расходы энергии основного обмена: — на работу мозга (18%), — печени (26%), — почек (7%), — сердца (9%), — мышечный тонус (26%) — работу других органов (14%).

Специфически динамическое действие пищи (СДДП) СДДП – это дополнительные к величине Ос. О энергозатраты, связанные с приемом пищи. СДДП зависит от вида принимаемой пищи: белки + 28 -30%, жиры + 12 -14%, углеводы + 7 -8%. смешнное питание + 15%.

Основной обмен зависит от возраста пола роста массы тела функции эндокринных желез

Рабочая прибавка — это дополнительные к величине Ос. О энергозатраты, связанные с выполнением различных видов работ Работа Физическая Умственная Суточные энергозатраты (общий обмен) = Ос. О × КФА (коэффициент физической активности)

Классификация работающих в зависимости от вида трудовой деятельности 1 группа – работники преимущественно умственного труда, (научные работники, студенты гуманитарных специальностей, операторы ЭВМ, педагоги и др.) Коэффициент физической активности (КФА) – 1,

Классификация работающих в зависимости от вида трудовой деятельности 2 группа – работники, занятые легким трудом, КФА – 1, 6 (водители трамваев, троллейбусов, агрономы, врачи, медсестры, работники сферы обслуживания и др.) 3 группа – работники средней тяжести труда, КФА – 1, 9 (слесари, станочники, водители автобусов, врачи-хирурги, металлурги-доменщики и др.)

Классификация работающих в зависимости от вида трудовой деятельности 4 группа – работники тяжелого физического труда, КФА – 2, 2 (строительные рабочие, механизаторы, металлурги и литейщики и др.) 5 группа – работники особо тяжелого физического труда, КФА – 2, 5 (горнорабочие, вальщики леса, землекопы и др.)

Расчет энергетического баланса Расчет энергозатрат: определение количества тепла, выделяемого из организма. методы калориметрии: Прямая Непрямая (газовый анализ)

Непрямая калориметрия Полный газовый анализ- определение энергозатрат организма на основании потребленного О 2 и выделенного СО 2.

Ассимиляция – совокупность процессов создания структур организма с накоплением энергии. Поступление из внешней среды веществ, необходимых для организма; превращение питательных веществ в соединения, которые могут использоваться клетками и тканями; синтез структурных элементов клеток, ферментов и т. д. , замена устаревших новыми; синтез более сложных соединений из более простых; отложение запасов.

Диссимиляция – совокупность процессов распада живой материи с выделением энергии. Мобилизация запасов организма; Расщепление сложных органических соединений до более простых; распад устаревших тканевых и клеточных элементов; Расщепление богатых энергией соединений с освобождением энергии; Выведение продуктов распада из организма.

Эндокринная регуляция обменных процессов Гормоны, регулирующие преимущественно энергетический обмен: адреналин глюкагон глюкокортикоиды инсулин

Основные механизмы действия гормонов на метаболизм ГОРМОН УГЛЕВОДЫ ЛИПИДЫ БЕЛКИ АДРЕНАЛИН ГЛИКОГЕНОЛИЗА (В ПЕЧЕНИ И МЫШЦАХ) ЛИПОЛИЗА — ГЛЮКОКОРТИ- КОИДЫ ГЛЮКОНЕОГЕНЕЗА ЛИПОЛИЗА ↓ СИНТЕЗА РАСПАДА ГЛЮКАГОН ГЛИКОГЕНОЛИЗА (В ПЕЧЕНИ, НО НЕ В МЫШЦАХ) — — ИНСУЛИН ТРАНСПОРТА В КЛЕТКИ, ОСОБЕННО МЫШЦ И ПЕЧЕНИ ↓ ГЛИКОГЕНОЛИЗА ↓ ГЛЮКОНЕОГЕНЕЗА ГЛИКОГЕНЕЗА ЛИПОГЕНЕЗА ИЗ УГЛЕВОДОВ ↓ ЛИПОЛИЗА СИНТЕЗА ↓ РАСПАДА

Эндокринная регуляция обменных процессов Гормоны, регулирующие иные обменные процессы (пластический обмен, терморегуляцию) и, как следствие – энергетический обмен: тиреоидные гормоны соматотропный гормон тестостерон эстрогены

Основные механизмы действия гормонов на метаболизм ГОРМОН Углеводы Липиды Белки ТИРЕОИДНЫЕ ГОРМОНЫ УСИЛИВАЮТ МНОЖЕСТВО ПРОЦЕССОВ МЕТАБОЛИЗМА С ПРЕОБЛАДАНИЕМ СИНТЕЗА БЕЛКА И РАСПАДА ЛИПИДОВ И УГЛЕВОДОВ СТГ ↓ ТРАНСПОРТА В КЛЕТКИ, ОСОБЕННО МЫШЦ И ПЕЧЕНИ ЛИПОЛИЗА СИНТЕЗА ТЕСТОСТЕРО Н — — СИНТЕЗА, В ОСНОВНОМ В МЫШЦАХ ЭСТРОГЕНЫ — ЛИПОГЕНЕЗА В ХАРАКТЕРНЫХ МЕСТАХ СИНТЕЗА

Энергетические субстраты различаются по: скорости высвобождения энергии в процессе катаболизма; емкости депо (величине запасов). Чем выше скорость высвобождения энергии субстрата, тем меньше его запасы.

Энергетические субстраты Углеводы – это субстрат с быстрым высвобождением энергии, но малыми резервами («быстрое топливо» организма); Липиды – это субстрат с медленным высвобождением энергии, но большими резервами («резервное топливо» организма).

Характеристика углеводов Быстрый энергетический субстрат. растворимы в воде могут достигать высокой концентрации в крови; поставка У к работающим тканям может быть быстрой и значительной служат энергетическим субстратом для тканей с быстрым использованием энергии.

Значение углеводов Нервная ткань использует почти исключительно углеводы. Мелкие молекулы углеводов осмотически активны. Уровень глюкозы в крови должен поддерживаться на постоянном уровне.

Характеристика липидов Молекулы Л: крупные, жирорастворимые (гидрофобные), обладают относительно низким содержанием атомов кислорода. обладают малой растворимостью. Л – медленный энергетический субстрат. Не могут достигать высокой концентрации в крови — не могут служить энергетическим субстратом для тканей с быстрым использованием энергии.

Пути превращений энергетических субстратов Расходование и депонирование (так как потребности в энергии постоянно изменяются). Переход на преимущественное использование того или другого субстрата (в зависимости от вида нагрузки, питания, некоторых других условий). Взаимное превращение субстратов.

Расчет энергетического баланса 1. Определение количества энергии, поступившей в организм: Количество белков, жиров и углеводов Калорические коэффициенты питательных веществ: при окислении – 1 г белка — 4, 1 ккал – 1 г жира — 9, 3 ккал – 1 г углеводов – 4, 1 ккал = 4, 19 к. Дж.

Распределение количества энергии, получаемой за счет белков, жиров и углеводов углеводы (55 -60%)жиры (30%)белки (10 -15%)

Органические вещества Функции Белки (полноценные, неполноценные) Строительная (пластическая), ферментативная, регуляторная, двигательная, защитная, транспортная, энергетическая Жиры (эссенциальные ЖК) Строительная, защитная, энергетическая, терморегуляторная, всасывание витаминов Углеводы («быстрые» , «медленные») Строительная, энергетическая, защитная (глюкуроновая к-та)

Обмен белков Резерв белков = 45 г (альбумины крови). При безбелковой диете в организме разрушается около 23 г белка (абсолютный белковый минимум). Физиологический белковый минимум — ~ 30 — 40 г в день. Белковый оптимум: ВЗРОСЛЫЙ ЧЕЛОВЕК — 1 г белка на кг массы тела. ПОЖИЛЫЕ ЛЮДИ И ДЕТИ – 1, 5 г белка на кг массы тела. ПРИ ФИЗИЧЕСКОЙ РАБОТЕ, БЕРЕМЕННОСТИ, ТЯЖЕЛЫХ ЗАБОЛЕВАНИЯХ — 2 г белка на кг массы тел а.

Азотистый баланс Это отношение количества азота, поступившего с пищей, к количеству азота, выделенного из организма. 100 г белка содержит 16 г азота (1 г азота соответствует 6, 25 г белка). Азотистый баланс: — равновесие — положительный — отрицательный

Азотистое равновесие – расход азота равен приходу (норма). Отрицательный азотистый баланс –расход азота больше прихода (при недостаточном приходе белка или усиленном его распаде, например, при опухолевом росте), так как: белки ни из чего не образуются; резервов белков практически нет; белки обязательно расходуются, даже если они не поступают. Б – преимущественно пластический субстрат.

Положительный азотистый баланс – приход азота больше расхода. Это наблюдается при усиленном образовании новых структур: росте; беременности; наращивании мышечной массы; после голодания при выздоровлении после изнуряющих болезней при условии, что поступление белка достаточно.

Обмен жиров Функции жиров: энергетическая пластическая защитная всасывание витаминов терморегуляция Суточная потребность – 1 -1, 2 г на 1 кг массы тела Биологическая ценность незаменимые жирные кислоты — полиненасыщенные: линолевая, линоленовая арахидоновая заменимые жирные кислоты

Характеристика липидов Липиды – пластический материал (основа биологических мембран). Липиды способствуют всасыванию в кишечнике жирорастворимых веществ (напр. , жирорастворимых витаминов). Подкожная жировая клетчатка — теплоизолятор. Отложения липидов выполняют важную механическую функцию (п/кожная ЖК смягчает механические травмы, жировые капсулы фиксируют внутренние органы) Липиды входят в состав или служат источником многих важных веществ (стероидные гормоны, желчные кислоты, простагландины и др.)

Обмен углеводов Функции углеводов: 1. энергетическая 2. пластическая 3. защитная (глюкуроновая к-та) Депо углеводов 300 – 400 гр. Моносахариды (глюкоза, фруктоза, галактоза, манноза) Полисахариды: — перевариваемые (крахмал, гликоген)- 80% — неперевариваемые (целлюлоза, пектиновые вещества)

Водно-солевой обмен совокупность процессов: всасывания, распределения, потребления, выделения воды и солей. Обеспечивает гомеостаз: постоянство осмотической концентрации, ионного состава, КЩР внутренней среды организма.

Функции воды в организме Функция растворителя — все вещества перед всасыванием растворяются в воде; транспортная – переносит питательные вещества к клеткам и уносит продукты распада; участие в окислительных процессах и других химических реакциях; терморегуляторная; входит в состав пищеварительных соков.

Водные пространства организма (классификация J. S. Edelman, J. Leibman 1959) Интрацеллюлярная жидкость (пространство) Экстрацеллюлярная жидкость (пространство): внутрисосудистая жидкость межклеточная жидкость (собственно интерстициальная) ● Трансцеллюлярная жидкость – вода в составе секретов желез ЖКТ и других, мочи, ликвора, жидкости полости глаз, отделяемого серозных оболочек, синовиальной жидкости

Интерстициальный (межклеточный) водный сектор, содержит 1/4 всей воды организма (15% массы тела); является наиболее подвижным, меняющим объем при избытке или недостатке воды в теле. Вся вода организма обновляется примерно раз в месяц; внеклеточное водное пространство — еженедельно.

«Третье пространство» Скопления внеклеточной жидкости, в которых не действуют физиологические механизмы регуляции водно-электролитного баланса, обозначают термином «третье пространство» ; это воды полостей тела: брюшной, плевральной и т. д.

Система регуляций водного баланса обеспечивает основные жизненные процессы: поддержание постоянства общего объема жидкости в организме, оптимальное распределение воды между водными пространствами и секторами организма. Факторы поддержания относительного водного постоянства: деятельность почек и других органов выделения, питьевое поведение и жажда.

Активация Р AA Ишемия почек. Симпатическая нервная система A ДГ ЖАЖДА Натриевый/Водный баланс Осмоляльность плазмы. Регуляция обмена натрия и объема внеклеточной жидкости Количество и тоничность жидкости. Уровень альдостерон а Гиповолеми я. Вазоконстрикция Гипотензи я ПНП

Гипергидратация – избыточное поступление и образование воды при неадекватно малом ее выделении из организма, ведущее к ее накоплению. Вода в основном накапливается в интерстициальном водном секторе. Значительная степень гипергидратации проявляется водной интоксикацией (возбуждение нервных центров и мышечные судороги).

Дегидратация – недостаточное поступление и образование воды или чрезмерно большое ее выделение, приводящее к уменьшению водных пространств, г. о. , интерстициального сектора. Сопровождается сгущением крови, ухудшением ее свойств и нарушением гемодинамики. Снижение количества воды до 20% массы тела ведет к летальному исходу.

Поступление воды Потребность человека в воде составляет в сутки 2 -2, 5 л. Источники: вода в составе питья (900 -1200 мл) и пищи (900 -1000 мл); вода эндогенная (300 -350 мл). Воду удаляют почки, потовые железы, легкие и кишечник. Почки за сутки удаляет 1 -1, 5 л воды в виде мочи. Потовые железы выделяют 500 -1000 мл в обычных условиях.

Выведение воды Через кишечник с калом выделяется 100 -150 мл воды. Потребленная вода / выведенная вода = водный баланс. Приход воды должен полностью покрывать расход, иначе наступают серьезные нарушения жизнедеятельности. Легкими в виде водяных паров выдыхается 350 -400 мл воды. При углублении и учащении дыхания за сутки может выделиться до 800 мл воды.

Питание. Основные принципы составления пищевого рациона Питание должно быть рациональным и сбалансированным, чтобы обеспечить сохранение здоровья, высокую работоспособность. Физиологические нормы питания зависят от возраста, пола, массы тела, климата, характера выполняемой работы и функционального состояния организма.

Требования, предъявляемые к пищевому рациону: ◘ Энергетическая достаточность; ◘ достаточность и сбалансированность поступления ◘ белков; ◘ жиров; ◘ углеводов; ◘ соотношение в пищевом рационе белков, жиров и углеводов; ◘ достаточность содержания витаминов и минеральных солей; ◘ кратность приема пищи и %-ное распределение приема пищи.

Энергетическая достаточность пищевого рациона Определение энергетической ценности пищевого рациона с учетом усвояемости питательных веществ. Усвояемость — животной пищи — 95% — растительной — 80% — смешанной — 85 -90% ПРАВИЛО ИЗОДИНАМИИ – ПИТАТЕЛЬНЫЕ ВЕЩЕСТВА, КАК ИСТОЧНИК ЭНЕРГИИ, ВЗАИМОЗАМЕНЯЕМЫ В СООТВЕТСТВИИ С ИХ ЭНЕРГЕТИЧЕСКОЙ ЦЕННОСТЬЮ.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «ezvezdnaya.ru» — Отношения. Маникюр. Звезды. Рецепты. Уход за кожей